Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexander Rohde and Werner Urland*

Institut für Anorganische Chemie, Universität Hannover, Callinstrasse 9, D-30167 Hannover, Germany

Correspondence e-mail: urland@acc.uni-hannover.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.034 wR factor = 0.087 Data-to-parameter ratio = 16.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[trimethylammonium [[diaquabis(dichloroacetato- $\kappa^2 O, O'$)gadolinium(III)]di- μ -dichloroacetato- $\kappa^4 O: O'$] dichloroacetate]

The title compound, $\{(C_3H_{10}N)[Gd(C_2HCl_2O_2)_3(H_2O)_2](C_2H-Cl_2O_2)\}_n$, was synthesized by the reaction of Gd_2O_3 with trimethylammonium chloride in an aqueous solution of dichloroacetic acid. The compound consists of chains, running along the *a* axis. The Gd^{3+} ions are coordinated by eight O atoms, giving a distorted square antiprism.

Received 23 May 2006 Accepted 24 May 2006

Comment

In connection with our investigations of the structural chemistry of lanthanide (Ln) halogenoacetates with nitrogencontaining cations, we are interested in Gd^{3+} dichloroacetates, of which until now only the compounds with methylammonium (Rohde & Urland, 2005) and ethylammonium (Rohde & Urland, 2006) were known. We present here the crystal structure of the trimethylammonium-containing gadolinium dichloroacetate.

The structure of the title compound, (I), is shown in Fig. 1. The Gd³⁺ ion is coordinated by eight O atoms originating from five carboxylate groups, with Gd-O distances between 2.349 (3) and 2.541 (3) Å (Table 1), and two water molecules. giving a distorted square antiprism. The characteristic structural units are polymeric $[Gd(C_2HCl_2O_2)_3(H_2O)_2]_n$ chains, running along [100], with bidentate bridging carboxylate groups (Fig. 2). Two carboxylate groups are involved in bridging two Gd^{3+} cations with similar $Gd^{3+} \cdots Gd^{3+}$ distances [4.639 (1) and 4.859 (1) Å]. Besides the bridging dichloroacetate ions, there is one chelating ion and a non-coordinated ion. The non-coordinated dichloroacetate ion is bonded via hydrogen bonds to the coordinated water molecules and to the trimethylammonium cation. The water molecules are also involved in intramolecular hydrogen bonds with the O atoms of the chelating dichloroacetate ion. These hydrogen bonds are depicted in Fig. 3 and listed in Table 2.

Experimental

Figure 1

View of the asymmetric unit of (I), showing the atom-labelling scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The polymeric chain of (I). H atoms have been omitted for clarity.

(3.09 g, 24 mmol; Fluka, 98.5%) in H₂O (10 ml) at about 353 K in a glass container. After the oxide was dissolved, trimethylammonium chloride (0.36 g, 6 mmol; Sigma–Aldrich, 98%) was added. The solution was cooled to room temperature. After a few weeks, colourless crystals had formed.

Crystal data

$(C_{3}H_{10}N)[Gd(C_{2}HCl_{2}O_{2})_{3}-$	$V = 2623.4 (12) \text{ Å}^3$
$(H_2O)_2](C_2HCl_2O_2)$	Z = 4
$M_r = 765.11$	$D_x = 1.937 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
$a = 9.401 (3) \text{ Å}_{-}$	$\mu = 3.39 \text{ mm}^{-1}$
b = 16.562 (3) Å	T = 293 (2) K
c = 16.868 (5) Å	Needle, colourless
$\beta = 92.74 \ (3)^{\circ}$	$0.67 \times 0.26 \times 0.26$ mm

Figure 3 Detail of the hydrogen-bonding (dashed lines) in (I).

Data collection

Stoe IPDS diffractometer φ scans Absorption correction: none 36838 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.087$ S = 0.954859 reflections 295 parameters

4859 independent reflections 3728 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.080$ $\theta_{\text{max}} = 26.0^{\circ}$

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0567P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.71 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -1.03 \text{ e } \text{Å}^{-3}$

Table 1

Sel	lec	ted	bond	lengths	(A)).
-----	-----	-----	------	---------	-----	----

Gd1-O22 ⁱ	2.349 (3)	Gd1-O21	2.403 (3)
Gd1-O31	2.366 (4)	Gd1-O32 ⁱⁱ	2.422 (3)
Gd1 - O2W	2.376 (3)	Gd1-O12	2.510 (3)
Gd1 - O1W	2.378 (4)	Gd1-O11	2.541 (3)

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z.

Table 2Hydrogen-bond geometry (Å, °).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		• • • •			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$\begin{array}{c} 01W - H11W \cdots 041 \\ 01W - H12W \cdots 011^{ii} \\ 02W - H21W \cdots 012^{i} \\ 02W - H22W \cdots 042 \\ N1 - H1 \cdots 041 \end{array}$	0.99 (2) 0.99 (2) 0.97 (2) 0.98 (2) 0.91	1.72 (2) 1.81 (3) 1.81 (2) 1.65 (2) 1.88	2.713 (5) 2.753 (5) 2.772 (5) 2.627 (5) 2.747 (6)	174 (6) 160 (5) 169 (5) 176 (5) 158

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) -x + 2, -y + 1, -z.

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.98 (methine) or C–H = 0.96 Å (methyl) and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. The H atom on the N atom was positioned geometrically and refined as riding, with N–H = 0.91 Å and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm N})$. The H atoms of the water molecules were located in a Fourier map and refined with the restraints O–H =

0.99 (2) Å and $H \cdots H = 1.55$ (4) Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. The deepest hole is located 0.91 Å from atom Gd1.

Data collection: *IPDS Software* (Stoe & Cie, 1998); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 2001); software used to prepare material for publication: *SHELXL97*.

References

- Brandenburg, K. (2001). *DIAMOND*. Version 2.1e. Crystal Impact GbR, Bonn, Germany.
- Rohde, A. & Urland, W. (2005). Z. Anorg. Allg. Chem. 631, 417-420.
- Rohde, A. & Urland, W. (2006). J. Alloys Compd. 408-412, 618-621.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (1998). IPDS Software. Version 2.87. Stoe & Cie GmbH, Darmstadt, Germany.